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Abstract: Levodopa is the most effective symptomatic agent in
the treatment of Parkinson’s disease (PD) and the “gold stan-
dard” against which new agents must be compared. However,

there remain two areas of controversy: (1) whether levodopa is
toxic, and (2) whether levodopa directly causes motor compli-
cations. Levodopa is toxic to cultured dopamine neurons, and
this may be a problem in PD where there is evidence of
oxidative stress in the nigra. However, there is little firm
evidence to suggest that levodopa is toxic in vivo or in PD.
Clinical trials have not clarified this situation. Levodopa is also
associated with motor complications. Increasing evidence sug-
gests that they are related, at least in part, to the short half-life
of the drug (and its potential to induce pulsatile stimulation of
dopamine receptors) rather than to specific properties of the
molecule. Treatment strategies that provide more continuous
stimulation of dopamine receptors provide reduced motor com-
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plications in MPTP monkeys and PD patients. These studies
raise the possibility that more continuous and physiological
delivery of levodopa might reduce the risk of motor complica-
tions. Clinical trials to test this hypothesis are underway. We

review current evidence relating to these areas of controversy.
© 2004 Movement Disorder Society
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Since its introduction more than 30 years ago, levo-
dopa (L-dopa) therapy has revolutionized the treatment of
Parkinson’s disease (PD), providing marked symptom-
atic benefits to virtually all PD patients and increasing
the time that PD patients can enjoy independent activities
of daily living, employability, and possibly even life
span. Although the drug is extremely effective, two main
areas of controversy exist. The first relates to whether or
not L-dopa is toxic to dopamine neurons. L-Dopa can
generate cytotoxic reactive oxygen species (ROS) by
way of the oxidative metabolism of dopamine or via
autooxidation. This has led to theoretical concerns that
L-dopa might be toxic to dopamine neurons, and might
accelerate the rate of degeneration of nigral neurons in
PD. Indeed, L-dopa can be toxic to cultured dopaminer-
gic neurons; however, there is little or no evidence from
in vivo models to suggest that L-dopa treatment damages
nigral neurons in PD. Indeed, there is evidence suggest-
ing that under some circumstances the drug might be
protective and have trophic effects. A second area of
controversy is when L-dopa treatment should be initiated.
Although L-dopa is the most effective drug for the symp-
tomatic treatment of PD, the high prevalence of motor
complications (motor fluctuations and dyskinesias) asso-
ciated with chronic L-dopa treatment is a troublesome
limitation. This has led some physicians to advocate that
the initiation of L-dopa treatment be delayed. Others,
however, believe that the motor complications associated
with L-dopa therapy are primarily the result of disease
severity and the method of delivery, and recommend that
L-dopa therapy should be introduced early in the course
of the disease because of its striking symptomatic effects.
This review will consider evidence bearing on these
controversies.

L-DOPA AND NEUROTOXICITY

In Vitro Data

Numerous studies have demonstrated the potential of
L-dopa (or dopamine) to exert toxic effects on cultured
dopaminergic neurons.1–3 Both L-dopa and dopamine are
known to undergo autooxidation leading to the formation
of highly reactive oxygen species (ROS), which include
quinones, semiquinones, superoxide radical, hydrogen
peroxide, and hydroxyl radical.4 These have the potential

to damage critical biomolecules such as DNA,5,6 pro-
teins,7 and lipids,8,9 and ultimately to cause cell death.
Exposure to high levels of dopamine and L-dopa reduces
the number of tyrosine hydroxylase (TH)-positive neu-
rons in fetal rat mesencephalic cultures and other dopa-
minergic cell lines,1,10–17 and induces apoptotic cell
death with cell shrinkage, membrane blebbing, and DNA
fragmentation.18–21

The potential of L-dopa to induce ROS is relevant in
PD because of evidence that the substantia nigra pars
compacta (SNc) is in a state of oxidative stress. Post-
mortem analyses show increased levels of the pro-oxi-
dant ferrous iron (Fe2�)22–24 decreased mitochondrial
complex I,25,26 and a reduction in levels of the antioxi-
dant reduced glutathione (GSH)27,28 in the PD nigra.
Furthermore, there is evidence of oxidative damage to
lipids29,30 DNA,31 and proteins.32,33 On the other hand,
most studies showing L-dopa toxicity in tissue culture
used concentrations greater than 50 �mol/L.1,12,14–16,34

By contrast, peak plasma concentrations in PD patients
are in the range of 10 to 20 �mol/L35–37 and only about
12% of orally administered L-dopa reaches the cerebro-
spinal fluid (CSF).36 In these concentrations, L-dopa is
not toxic to cultured dopamine neurons. Furthermore,
most studies used culture systems that are relatively
lacking in glial cells, which contain high concentrations
of antioxidants and trophic factors. When glial cells are
included in the culture system, dopaminergic neurons are
relatively protected from L-dopa toxicity.17,38,39 It is note-
worthy that levels of the antioxidant ascorbic acid are
virtually undetectable in mesencephalic cultures.40 By
contrast, the concentration of ascorbic acid in human
CSF is relatively high (�130 �mol/L),41 and even higher
in the brains of normal and PD patients.28 When included
in culture media, ascorbic acid provides almost complete
protection from L-dopa toxicity.12,14,18,34,40,42

In contrast to the above, there is evidence that under
certain study conditions L-dopa can protect cultured do-
pamine neurons. Studies using glia-conditioned media
have shown that L-dopa can elicit a neurotrophic effect
manifest by increased cell survival and enhanced neurite
outgrowth.1,17,43,44 In addition, exposure to low concen-
trations of L-dopa can protect dopamine neurons from
subsequent exposure to pro-oxidants that would other-
wise be toxic.14 These neuroprotective properties are
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associated with increased expression of GSH14,43 and
other antiapoptotic molecules,17 which are thought to
occur in response to a L-dopa-mediated low-level injury.
In support of this concept, it is noted that neuroprotective
effects associated with L-dopa can be reversed by ascor-
bate, which prevents its autooxidation.1,45 This suggests
that both the protection and neurodegeneration associ-
ated with L-dopa result from autooxidation and genera-
tion of free radicals, with protection occurring as a result
of a low-level injury with activation of intracellular pro-
tective mechanisms, whereas toxicity results from dam-
age that is sufficiently severe that it overwhelms the
cell’s defensive capacities.14,45 These effects also occur
with analogues of L-dopa that undergo autooxidation
(e.g., dopamine, apomorphine, catechol, and hydroqui-
none), but not with analogues that do not undergo au-
toxidation (e.g. 3-O-methyl-DOPA, tyrosine, and 2,4-
dihydroxyphenylalanine).14

In summary, L-dopa may be toxic or protective to
cultured dopamine neurons depending on study condi-
tions. The significance of these in vitro findings with
respect to the effect of L-dopa in PD is not known, and it
is not certain that any findings in tissue culture models
are directly relevant to PD where ascorbate levels are
relatively high and the presence of glia may provide
trophic support for neurons.

In Vivo Animal Experiments

Several studies have examined the potential of L-dopa
to induce toxicity in normal animals and humans, as well
as in animal models of PD. No reduction in the number
of dopaminergic neurons was observed in the SNc of
normal rats or mice chronically treated with high doses
of L-dopa for up to 18 months.46–48 Similarly, there was
no evidence of L-dopa–induced neurodegeneration in
normal primates49,50 or non-parkinsonian humans.51,52

L-Dopa has also been tested in rats with 6-hydroxydo-
pamine (6-OHDA)-induced lesions of the nigrostriatal
tract. One study reported that chronic L-dopa treatment
was associated with a small reduction in the number of
dopaminergic neurons in the ventral tegmental area,53

but this result could not be duplicated by the same
authors in a subsequent trial.54 Indeed, in the latter study,
12 weeks of chronic L-dopa therapy was associated with
a significant recovery in the number of TH-positive neu-
rons. L-Dopa also promoted recovery of dopamine neu-
rons with increased striatal innervation in another study
in 6-OHDA-treated rodents.47

To represent better the situation in PD, where the SNc
is in a state of oxidative stress, L-dopa was administered
in combination with buthionine sulfoximine (BSO) to
cultured dopamine neurons and rodent pups.45 BSO re-

duces the levels of the antioxidant glutathione, thereby
inducing a state of oxidative stress. In vitro, the combi-
nation of L-dopa and GSH depletion acted synergistically
to reduce the number of surviving dopamine neurons,
and this could be prevented completely by the addition of
ascorbate. In rodent pups, however, L-dopa was not toxic
to dopamine neurons even when GSH levels were de-
pleted by as much as 90%, far exceeding the reduction
found in PD. This may reflect the presence of ascorbate
in relatively high levels in normal and PD brains.

Clinical Trials

Recent clinical trials in PD patients have tested the
possibility that L-dopa might be toxic. Two trials each
demonstrated an increased rate of decline of imaging
biomarkers of nigrostriatal function in patients treated
with L-dopa in comparison with dopamine agonists.55,56

As there was no placebo control, it was not possible to
determine if the difference in the rate of deterioration
between these agents was related to a toxic effect of
L-dopa or a protective effect of the dopamine agonists. It
is also possible that these results relate to pharmacologic
differences in the capacity of the drugs to induce regu-
latory changes in components of the nigrostriatal sys-
tem.57 These studies thus do not provide conclusive
information on whether or not L-dopa is toxic in PD.58

The recently completed ELLDOPA study59 compared
the rate of disease progression in untreated PD patients
randomly assigned to receive one of three doses of L-
dopa or placebo. The primary endpoint was the change in
Unified Parkinson’s Disease Rating Scale (UPDRS) mo-
tor score between untreated baseline and a final visit
carried out after 9 months of treatment with study drug
and 2 weeks of washout.59 In this study, there was less
deterioration from baseline in UPDRS motor score in
L-dopa-treated patients than in controls. This does not
suggest toxicity and indeed, is consistent with a protec-
tive effect. It is possible, however, that the washout was
inadequate and that L-dopa is associated with a long-
duration symptomatic effect that persists even after 2
weeks of withdrawal. Further, on neuroimaging studies
carried out as part of this study, L-dopa treatment was
associated with a greater rate of decline than placebo in
a biomarker of nigrostriatal function. This result suggests
that the drug might have a toxic effect, although here too
a confounding pharmacologic effect can not be excluded.
The ELLDOPA study thus does not resolve the issue of
whether or not L-dopa is toxic in PD.

In the final analysis, it remains unclear as to precisely
whether or not L-dopa has a toxic effect on dopamine
neurons in PD, but there is no clear evidence that the
drug has an adverse effect on disease progression. Ac-
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cordingly, most physicians prescribe L-dopa based solely
on considerations of its clinical efficacy and adverse
event profile in individual patients.60 Further clinical and
imaging studies to help clarify whether or not L-dopa is
toxic in PD are warranted.

L-DOPA AND MOTOR COMPLICATIONS

The major limitation to the chronic use of L-dopa is the
development of motor complications (motor fluctuations
and dyskinesias). These occur in approximately 50 to
80% of PD patients who have received L-dopa for more
than 5 to 10 years,61,62 and are more likely to occur in
patients with young onset PD.63,64 Motor complications
can represent a major source of disability, and in the
extreme can result in patients cycling between on re-
sponses complicated by severe dyskinesias, and off re-
sponses with disabling parkinsonism. The precise cause
of motor complications is not known, but increasing
evidence suggests that they are related to abnormal pul-
satile stimulation of dopamine receptors (see below).

Pulsatile Stimulation of
Striatal Dopamine Receptors

Over the past decade, our understanding of the orga-
nization of the basal ganglia has advanced considerably.
Initial models of the basal ganglia proposed that parkin-
sonism and L-dopa-induced dyskinesia were related to a
respective increase or decrease in the firing rate of basal
ganglia output neurons.65,66 This explanation, however,
does not account for many of the metabolic and physi-
ologic changes found in these conditions, or more im-
portantly why pallidotomy is associated with ameliora-
tion and not induction of dyskinesia.67 It is now
appreciated that the entire firing pattern is important in
conveying information from the basal ganglia to brain-
stem and cortical motor regions to facilitate the selection
of correct motor movements and inhibit undesired motor
movements.68–71

It is now known that normally nigrostriatal dopami-
nergic neurons fire continuously, independent of volun-
tary movement.72,72 Burst firing with increased dopamine
release may occur in response to glutamatergic drive,
reward, or anticipation of reward,74–77 but microdialysis
studies do not report any significant increase in extracel-
lular dopamine,78 probably reflecting the highly efficient
reuptake capacity of presynaptic terminals. Thus, in the
normal brain, striatal dopamine levels, and activation of
dopamine receptors on medium spiny striatal neurons
remain relatively constant.

In contrast, in the dopamine-denervated state, striatal
medium spiny neurons are deprived of the modulating
effects of dopamine leading to the development of par-

kinsonian symptoms and the need for dopaminergic re-
placement therapy. With disease progression, striatal do-
pamine levels become increasingly dependent on the
peripheral availability of exogenously administered L-
dopa and there is a loss of the buffering capacity of
remaining nigrostriatal terminals that regulate the uptake
and release of dopamine. Fluctuations in plasma levels of
a short-acting agent like L-dopa may thus be translated
into fluctuations in striatal dopamine concentrations
causing striatal dopamine receptors to be exposed to
alternating high and low concentrations of dopamine.
This pulsatile stimulation of denervated striatal dopa-
mine receptors may force an already abnormal basal
ganglia network to adapt to an even more abnormal
situation. Indeed, pulsatile stimulation of denervated do-
pamine receptors has been shown to induce a variety of
gene changes in striatal nerve cells and alterations in the
electrophysiological firing pattern of basal ganglia output
neurons.79–85

Dopamine denervation causes upregulation of pre-
proenkephalin (PPE) mRNA and downregulation of
dynorphin and substance P mRNA in both rodent and
primate models of PD.79–82 In 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-treated primates, in-
termittent, pulsatile treatment with L-dopa induces dys-
kinesia within a few weeks.83,84 In these animals, L-dopa
normalizes substance P gene expression but has no sig-
nificant effect on, and may even upregulate PPE expres-
sion.81,85 By contrast, treatment with long-acting dopa-
mine agonists normalize PPE and are not associated with
dyskinesia in drug-naive animals.86,87 Other gene
changes associated with pulsatile stimulation and the
development of dyskinesia include alterations in the Fos
family of genes and prodynorphin, particularly in the
rodent model.88 Gene changes associated with dyskinesia
are translated through as yet unknown mechanisms into
neurophysiologic changes that include a decrease in the
firing frequency of internal Globus Pallidus (GPi) neu-
rons (as predicted by the classic model), as well as
changes in the number and duration of pauses, bursts,
and degree of synchrony.89–95 It is likely that it is the
disruption of these abnormal firing patterns that accounts
for the antidyskinetic effects of pallidotomy and deep
brain stimulation.96–98

Factors Contributing to Pulsatile Stimulation

Two factors are thought to contribute to the develop-
ment of pulsatile stimulation; disease severity and the
half-life of the dopaminergic agent employed. With ad-
vancing disease, there are fewer remaining striatal dopa-
mine terminals and consequently a reduced capacity to
buffer fluctuations in striatal levels of L-dopa/dopamine.
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This concept is supported by the rapidity with which
motor complications develop with severe nigrostriatal
degeneration compared with the longer latency before
dyskinesias occur when there is milder disease. For ex-
ample, motor complications develop within days after
initiation of L-dopa in MPTP treated primates where
there is approximately 90 to 95% cell loss83,84,99 and
within weeks to months in patients with advanced PD100

or MPTP-induced parkinsonism.101,102 In contrast,
L-dopa induced dyskinesias tend to develop over years in
patients with typical PD where nigrostriatal degeneration
is not as advanced (40 to 60% cell loss)103 and gradually
become more severe over time.104 In addition, levodopa
does not cause dyskinesia in normal individuals.51,52

The half-life of the dopaminergic agent employed
also contributes to the likelihood of inducing pulsatile
stimulation. In MPTP-treated primates, short-acting
agents such as L-dopa,84,99 or D1 or D2 agonists such
as quinpirole,105 (�)-PHNO,106 and SKF-82958107 are
more likely to induce motor complications than are
long-acting dopamine agonists such as bromocrip-
tine99,108 and ropinirole.108,109 These results were ob-
tained even though dosages were titrated to ensure that
animals were matched for behavioral response.108,109

Indeed, dyskinesias were observed when the short-
acting dopamine agonist U-91356A was administered
intermittently, but not when the same agent was ad-
ministered continuously by infusion pump.110 In this
study, gene changes associated with dyskinesia were
seen with the intermittent administration of the drug
but not when the drug was delivered continuously.111

These studies illustrate that motor complications relate
to the manner in which a dopaminergic agent is ad-
ministered and its potential to induce pulsatile stimu-
lation. They suggest further that the risk of motor
complications in PD might be reduced by initiating
treatment with a long-acting dopaminergic agent that
avoids pulsatile stimulation of striatal dopamine re-
ceptors.

Clinical Trials

Several prospective, randomized, double-blind, con-
trolled trials have been carried out in PD patients com-
paring initial therapy with L-dopa to a dopamine agonist
to test the concept that long-acting agents might be
associated with a reduced risk of dyskinesia and other
motor complications.112–114 Each study demonstrated a
significantly reduced risk of developing motor compli-
cations when patients are started with a long-acting do-
pamine agonist in comparison to a short acting formula-
tion of L-dopa. These benefits persist even when
supplemental L-dopa is added, although the frequency of

dyskinesia increases with the addition of L-dopa. Inter-
estingly, patients assigned to start therapy with L-dopa
had enhanced motor benefits on the UPDRS in each of
these studies, even though open-label L-dopa could be
added to patients in either treatment group if considered
necessary. This has created some controversy in terms of
whether it is preferable to initiate PD therapy with a
dopamine agonist to reduce the risk of motor complica-
tions or to start with L-dopa to achieve an enhanced
antiparkinsonian response.115,116 It also remains uncer-
tain if comparable benefits could be achieved if patients
were started on L-dopa and the agonist introduced at a
later time point, and studies to test this concept are
currently underway.

There is also evidence that the administration of do-
paminergic agents in a more continuous fashion can
reverse established motor complications. Several studies
have demonstrated improvement in motor complications
induced by oral formulations of levodopa after chronic
infusion of apomorphine, lisuride, or L-dopa.117–124 More
recently, a prospective randomly ordered trial demon-
strated a significant reduction in both off periods and
dyskinesia with continuous subcutaneous infusion of li-
suride compared with a standard oral formulation of
L-dopa.125

These observations support the notion that motor com-
plications associated with the administration of L-dopa
are related to the drug’s short half-life and propensity to
induce pulsatile stimulation of striatal dopamine recep-
tors and not solely to features unique to the molecule
itself. They further suggest that if oral formulations of
L-dopa could be developed that provide less pulsatile,
more constant stimulation of dopamine receptors, such
treatment might provide the symptomatic benefits of the
drug with a reduced risk of motor complications. Studies
with continuous infusion of L-dopa support this hypoth-
esis, although this approach is impractical for patients,
physicians, and caregivers. The development of an oral
strategy that extends the half-life of L-dopa and simulates
the pharmacokinetic profile obtained with infusion ther-
apy may permit patients to obtain the antiparkinsonian
effects of L-dopa without the development of potentially
disabling side effects. To test this treatment philosophy,
two studies were carried out comparing the rate of dys-
kinesia production in patients randomly sorted to start
treatment with the standard immediate release formula-
tion of L-dopa or a controlled release formulation of
L-dopa with prolonged bioavailability of the drug.126 No
difference in the frequency or time to onset of dyskinesia
was detected between the two groups in either of these
trials.127–129 Sinemet CR, however, has somewhat erratic
absorption and was administered with a twice-a-day dos-
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ing schedule, and may therefore have failed to avoid
pulsatile stimulation. Another approach involves admin-
istering L-dopa in combination with a COMT inhibitor to
extend its half-life and reduce the risk of the drug induc-
ing pulsatile receptor stimulation. Indeed, preliminary
studies in MPTP monkeys demonstrate that L-dopa ad-
ministered four times daily in combination with a COMT
inhibitor is associated with reduced dyskinesia and en-
hanced motor benefits in comparison to L-dopa alone.130

Interestingly, this benefit was not seen with twice-a-day
dosing, presumably because this schedule did not elim-
inate pulsatility.131 Studies to test this approach in PD
patients are currently underway.

CONCLUSIONS

L-Dopa remains the most powerful and most widely
employed drug in the treatment of PD. Questions regard-
ing its potential toxicity and its role in the development
of motor complications persist, but increasing evidence
is beginning to shed light on these issues. There is little
to suggest that L-dopa is toxic, based on laboratory
studies. The effects of L-dopa in vitro can be attributed to
experimental conditions and it is not certain that the
toxicity seen in these models is relevant to the clinical
condition. In vivo studies are for the most part negative
and show no evidence of toxicity. The ELLDOPA study
did not show clinical evidence of an adverse effect of
L-dopa on disease progression, but the result may have
been confounded by a L-dopa-induced long-term symp-
tomatic benefit. Furthermore, imaging studies carried out
as part of the ELLDOPA study showed that L-dopa is
associated with an increased rate of decline of a biomar-
ker of nigrostriatal function. Although this could repre-
sent a toxic effect, it might also relate to a direct phar-
macologic effect of the drug on the dopamine
transporter. The ELLDOPA study thus failed to clarify
whether or not L-dopa is toxic in PD. With respect to the
motor complications that accompany L-dopa treatment,
increasing evidence indicates that they are related, at
least in part, to the short half-life of the drug and its
potential to induce pulsatile stimulation of dopamine
receptors. It is thus possible to envision that administer-
ing levodopa in combination with a COMT inhibitor
might permit more continuous and physiologic stimula-
tion of dopamine receptors with a reduced risk of motor
complications, although this remains to be established in
PD patients.
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